Abstract

Worldwide, there have been few comparative studies on rotifer communities in subtropical lakes. We studied changes in rotifer community structure over 1 year and its relationship to several physicochemical variables in five subtropical shallow lakes in East China, covering a nutrient gradient from mesotrophy to moderate eutrophy. In these lakes, the genera Brachionus, Lecane, and Trichocerca dominated the rotifer species composition, and Polyarthra dolichoptera, Keratella cochlearis, Filinia longiseta, T. pusilla, and Anuraeopsis fissa were the dominant species. With increased nutrient loading, total rotifer abundance and species dominance increased, indicating that rotifer abundance might be a more sensitive indicator of trophic state than species composition. Comparative analyses of the six rotifer community indices calculated in this study and redundancy analysis (RDA) revealed that the two slightly eutrophic lakes and the other two moderately eutrophic lakes exhibited a high degree similarity in community structure. This suggests that the trophic state of a lake determines the rotifer community structure. In contrast, in the two moderately eutrophic lakes, the mass ratios of TN:TP and the contents of TP suggested N-limitation and cyanobacteria dominance in phytoplankton communities might be possible. In these lakes TN played a more important role in shaping the rotifer community according to stepwise multiple regression and RDA. RDA analysis also suggested that rotifer species distribution was strongly associated with trophic state and water temperature, with water temperature being the most important factor in determining seasonality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call