Abstract

Many applications for Restricted Boltzmann Machines (RBM) have been developed for a large variety of learning problems. Recent developments have demonstrated the capacity of RBM to be powerful generative models, able to extract useful features from input data or construct deep artificial neural networks. In this work, we propose a learning algorithm to find the optimal model complexity for the RBM by improving the hidden layer. We compare the classification performance of regular RBM use RBM() function, classification RBM use stackRBM() function and Deep Belief Network (DBN) use DBN() function with different hidden layer. As a result, Stacking RBM and DBN could improve our classification performance compare to regular RBM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.