Abstract
Salinity is one of the main limitations to legume productivity in many regions of the world and it is estimated that 50% of all arable land will become affected by salinity by 2050. The impact of field salinity on soybean performance was assessed using two soybean accessions (KCW and HMC) cultivated in salt-treated soil and non-salt treated soil. We used a 30 cm deep field system layered with 0.4 kg/m2 NaCl for the salt-treated experiment while the control field received no salt treatment. The results show that salinity reduces soybean growth and yield as evident from the reduction in the plant shoot length, stem diameter, number of branches, number of pods and seed weight. However, the reduction in these growth parameters was less pronounced in the HMC accession than the KCW accession. Furthermore, Na+ content in leaves of the HMC accession was lower than that of the KCW accession. This proved that salinity has a damaging effect on soybean growth and yield and the relative tolerance of the HMC accession is attributed in part to its ability to restrict Na+ transport to the leaves. While the study emphasizes salt exclusion as a potentially useful mechanism for salinity tolerance in soybean, it provides evidence that the HMC accession is a good genetic resource for breeding soybean varieties with improved salinity stress tolerance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JOURNAL OF OASIS AGRICULTURE AND SUSTAINABLE DEVELOPMENT
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.