Abstract

The continuous evolution of global navigation satellite systems (GNSS) meteorology has led to an increased use of associated observations for operational modern low-latency numerical weather prediction (NWP) models, which assimilate GNSS-derived zenith total delay (ZTD) estimates. The development of NWP models with faster assimilation cycles, e.g., 1-h assimilation cycle in the rapid update cycle NWP model, has increased the interest of the meteorological community toward sub-hour ZTD estimates. The suitability of real-time ZTD estimates obtained from three different precise point positioning software packages has been assessed by comparing them with the state-of-the-art IGS final troposphere product as well as collocated radiosonde (RS) observations. The ZTD estimates obtained by BNC2.7 show a mean bias of 0.21 cm, and those obtained by the G-Nut/Tefnut software library show a mean bias of 1.09 cm to the IGS final troposphere product. In comparison with the RS-based ZTD, the BNC2.7 solutions show mean biases between 1 and 2 cm, whereas the G-Nut/Tefnut solutions show mean biases between 2 and 3 cm with the RS-based ZTD, and the ambiguity float and ambiguity fixed solutions obtained by PPP-Wizard have mean biases between 6 and 7 cm with the references. The large biases in the time series from PPP-Wizard are due to the fact that this software has been developed for kinematic applications and hence does not apply receiver antenna eccentricity and phase center offset (PCO) corrections on the observations. Application of the eccentricity and PCO corrections to the a priori coordinates has resulted in a 66 % reduction of bias in the PPP-Wizard solutions. The biases are found to be stable over the whole period of the comparison, which are criteria (rather than the magnitude of the bias) for the suitability of ZTD estimates for use in NWP nowcasting. A millimeter-level impact on the ZTD estimates has also been observed in relation to ambiguity resolution. As a result of a comparison with the established user requirements for NWP nowcasting, it was found that both the G-Nut/Tefnut solutions and one of the BNC2.7 solutions meet the threshold requirements, whereas one of the BNC2.7 solution and both the PPP-Wizard solutions currently exceed this threshold.

Highlights

  • The observations from Global Navigation Satellite System (GNSS) systems can be used to study the state of the troposphere at a given location and time by estimating the respective amount of zenith total delay (ZTD) and converting this to integrated water vapor (IWV) using surface meteorological data (Bevis et al 1994)

  • The ZTD estimates obtained by BNC2.7 show a mean bias of 0.21 cm, and those obtained by the G-Nut/Tefnut software library show a mean bias of 1.09 cm to the International GNSS Service (IGS) final troposphere product

  • We have evaluated the suitability of RT-precise point positioning (PPP) ZTD estimates for meteorological applications through a comparison with the IGS final troposphere product and collocated radiosonde (RS) observations

Read more

Summary

Introduction

The observations from Global Navigation Satellite System (GNSS) systems can be used to study the state of the troposphere at a given location and time by estimating the respective amount of zenith total delay (ZTD) and converting this to integrated water vapor (IWV) using surface meteorological data (Bevis et al 1994). Both of these GNSS-derived tropospheric parameters (ZTD and IWV) can further be assimilated into numerical weather. In late 2012, another European project ‘‘COST Action ES1206: Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate (GNSS4SWEC)’’ (Jones et al 2014) was approved to investigate GNSS meteorology further in the light of modern challenges and developments

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call