Abstract
There are available metrics for predicting fault prone classes, which may help software organizations for planning and performing testing activities. This may be possible due to proper allocation of resources on fault prone parts of the design and code of the software. Hence, importance and usefulness of such metrics is understandable, but empirical validation of these metrics is always a great challenge. Random Forest (RF) algorithm has been successfully applied for solving regression and classification problems in many applications. In this work, the authors predict faulty classes/modules using object oriented metrics and static code metrics. This chapter evaluates the capability of RF algorithm and compares its performance with nine statistical and machine learning methods in predicting fault prone software classes. The authors applied RF on six case studies based on open source, commercial software and NASA data sets. The results indicate that the prediction performance of RF is generally better than statistical and machine learning models. Further, the classification of faulty classes/modules using the RF method is better than the other methods in most of the data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.