Abstract

The effect of neutron radiation on the electroluminescence of the Si p-i-n diode containing a multilayered Ge/Si heterostructure with self-assembled nanoislands is studied. In comparison with bulk Si, the diodes containing Ge(Si) nanoislands exhibit a higher radiation hardness of the electroluminescence signal, which is attributed to spatial localization of charge carriers in the Ge/Si nanostructures. The spatial localization of charge carriers impedes their diffusion to radiation defects followed by nonradiative recombination at the defects. The results show the possibilities of using Ge/Si heterostructures with self-assembled nanoislands for the development of optoelectronic devices resistant to radiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.