Abstract

Toroidal magnetic traps for plasma confinement make up an extended object of controlled nuclear fusion investigations. Mathematical simulation of equilibrium plasma configurations in the traps often deals with their analogues straightened into a cylinder. This paper presents a comparative analysis of their numerical investigations in both geometry variants. Mathematical tool of the models use two-dimensional boundary problems with the Grad-Shafranov differential equation for the magnetic flux function. As the investigation result, we present some quantitative characteristics of differences between toroidal and cylindrical configurations by two examples: a plasma torus with longitudinal electrical current and the Galathea-Belt toroidal trap with two ring-shaped current-carrying conductors immersed into the plasma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call