Abstract

BackgroundSubcellular trafficking is a hallmark of eukaryotic cells. Because of their pivotal role in the process, a great deal of attention has been paid to the SNARE proteins. Most R-SNAREs, or "longins", however, also possess a highly conserved, N-terminal fold. This "longin domain" is known to play multiple roles in regulating SNARE activity and targeting via interaction with other trafficking proteins. However, the diversity and complement of longins in eukaryotes is poorly understood.ResultsOur comparative genome survey identified a novel family of longin-related proteins, dubbed the "Phytolongins" because they are specific to land plants. Phytolongins share with longins the N-terminal longin domain and the C-terminal transmembrane domain; however, in the central region, the SNARE motif is replaced by a novel region. Phylogenetic analysis pinpoints the Phytolongins as a derivative of the plant specific VAMP72 longin sub-family and allows elucidation of Phytolongin evolution.Conclusion"Longins" have been defined as R-SNAREs composed of both a longin domain and a SNARE motif. However, expressed gene isoforms and splice variants of longins are examples of non-SNARE motif containing longins. The discovery of Phytolongins, a family of non-SNARE longin domain proteins, together with recent evidence on the conservation of the longin-like fold in proteins involved in both vesicle fusion (e.g. the Trs20 tether) and vesicle formation (e.g. σ and μ adaptin) highlight the importance of the longin-like domain in protein trafficking and suggest that it was one of the primordial building blocks of the eukaryotic membrane-trafficking machinery.

Highlights

  • Subcellular trafficking is a hallmark of eukaryotic cells

  • All nonArabidopsis candidate homologues were used as blast query sequences to be compared to Arabidopsis thaliana longins in order to group them based on classification of the main longin subfamilies (Ykt6, Sec22b and VAMP7) [11] and further division of plant VAMP7 proteins in two classes: VAMP71 and VAMP72 [40]

  • Our bioinformatic analysis of longin proteins has both verified the ancient nature of the three R-soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) longin subfamilies and identified the Phytolongins, a previously undescribed Longin Domain (LD) protein family, specific to plants

Read more

Summary

Results

Our comparative genome survey identified a novel family of longin-related proteins, dubbed the "Phytolongins" because they are specific to land plants. Phytolongins share with longins the N-terminal longin domain and the C-terminal transmembrane domain; in the central region, the SNARE motif is replaced by a novel region. Phylogenetic analysis pinpoints the Phytolongins as a derivative of the plant specific VAMP72 longin sub-family and allows elucidation of Phytolongin evolution. The discovery of Phytolongins, a family of non-SNARE longin domain proteins, together with recent evidence on the conservation of the longin-like fold in proteins involved in both vesicle fusion (e.g. the Trs tether) and vesicle formation (e.g. σ and μ adaptin) highlight the importance of the longin-like domain in protein trafficking and suggest that it was one of the primordial building blocks of the eukaryotic membrane-trafficking machinery

Background
Results and discussion
Conclusion
Methods
Hong W
34. Arabidopsis Genome Initiative
40. Sanderfoot A
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.