Abstract

In the past decade, the discovery, synthesis, and evaluation for hundreds of CD38 covalent and non-covalent inhibitors has been reported sequentially by our group and partners; however, a systematic structure-based guidance is still lacking for rational design of CD38 inhibitor. Here, we carried out a comparative analysis of pharmacophore features and quantitative structure-activity relationships for CD38 inhibitors. The results uncover that the essential interactions between key residues and covalent/non-covalent CD38 inhibitors include (i) hydrogen bond and hydrophobic interactions with residues Glu226 and Trp125, (ii) electrostatic or hydrogen bond interaction with the positively charged residue Arg127 region, and (iii) the hydrophobic interaction with residue Trp189. For covalent inhibitors, besides the covalent effect with residue Glu226, the electrostatic interaction with residue Arg127 is also necessary, while another hydrogen/non-bonded interaction with residues Trp125 and Trp189 can also be detected. By means of the SYBYL multifit alignment function, the best CoMFA and CoMSIA with CD38 covalent inhibitors presented cross-validated correlation coefficient values (q(2)) of 0.564 and 0.571, and non-cross-validated values (r(2)) of 0.967 and 0.971, respectively. The CD38 non-covalent inhibitors can be classified into five groups according to their chemical scaffolds, and the residues Glu226, Trp189, and Trp125 are indispensable for those non-covalent inhibitors binding to CD38, while the residues Ser126, Arg127, Asp155, Thr221, and Phe222 are also important. The best CoMFA and CoMSIA with the F12 analogues presented cross-validated correlation coefficient values (q(2)) of 0.469 and 0.454, and non-cross-validated values (r(2)) of 0.814 and 0.819, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call