Abstract

Laser ranging is an emerging technology for tracking interplanetary missions, offering both range accuracy and precision at the level of several millimeters. The ground segment uses existing Satellite Laser Ranging (SLR) technology, whereas the space segment requires an active system for either one- or two-way ranging. We numerically investigate the performance of one- and two-way active planetary laser ranging systems to quantify the difference in science return from missions employing this technology. In doing so, we assess the added value of the more complicated two-way system compared to its one-way counterpart. We simulate range measurement errors for both types of systems, using clock error time histories generated from Allan variance profiles. We use two test cases: a lunar polar orbiter and a Phobos lander. In the Phobos lander simulations, we include the estimation of Phobos librations and C¯2,2 gravity field coefficient. For the lunar orbiter, we include an empirical force-error model in our truth model. We include the estimation of clock parameters over a variety of arc lengths for one-way range data analysis and use a variety of state arc durations for the lunar orbiter simulations. For the lunar orbiter, performance of the one- and two-way system is similar for sufficiently short clock arcs. This indicates that dynamical-model error, not clock noise, is the dominant source of estimation uncertainty. However, correlations between the clock and state parameters cause an exchange between clock and state signal for the one-way system, making these results less robust. The results for the Phobos lander show superior estimation accuracy of the two-way system. However, knowledge of Phobos' interior mass distribution from both the one- or two-way system would currently be limited to the same level by inaccuracies in our knowledge of Phobos' volume. Both the lunar orbiter and Phobos lander simulations show that the use of two-way planetary laser ranging should be accompanied by improvements in associated measurements and models to allow this data type to be exploited to its full potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call