Abstract
In this paper, we present a comparative analysis of model-free reinforcement learning (RL) and model predictive control (MPC) approaches for intelligent control of heating, ventilation, and air-conditioning (HVAC). Deep-Q-network (DQN) is used as a candidate for model-free RL algorithm. The two control strategies were developed for residential demand-response (DR) HVAC system. We considered MPC as our golden standard to compare DQN's performance. The question we tried to answer through this work was, What % of MPC's performance can be achieved by model-free RL approach for intelligent HVAC control?. Based on our test result, RL achieved an average of ≈ 62% daily cost saving of MPC. Considering the pure optimization and model-based nature of MPC methods, the RL showed very promising performance. We believe that the interpretations derived from this comparative analysis provide useful insights to choose from various DR approaches and further enhance the performance of the RL-based methods for building energy managements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.