Abstract

Scorpions are a group of arachnids with great evolutionary success that comprise more than 2,000 described species. Mitochondrial genomes have been little studied in this clade. We describe and compare different scorpion mitochondrial genomes and analyze their architecture and molecular characteristics. We assembled eight new scorpion mitochondrial genomes from transcriptomic datasets, annotated them, predicted the secondary structures of tRNAs, and compared the nucleotide composition, codon usage, and relative synonymous codon usage of 16 complete scorpion mitochondrial genomes. Lastly, we provided a phylogeny based on all mitochondrial protein coding genes. We characterized the mitogenomes in detail and reported particularities such as dissimilar synteny in the family Buthidae compared to other scorpions, unusual tRNA secondary structures, and unconventional start and stop codons in all scorpions. Our comparative analysis revealed that scorpion mitochondrial genomes exhibit different architectures and features depending on taxonomic identity. We highlight the parvorder Buthida, particularly the family Buthidae, as it invariably exhibited different mitogenome features such as synteny, codon usage, and AT-skew compared to the parvorder Iurida that included the rest of the scorpion families we analyzed in this study. Our results provide a better understanding of the evolution of mitogenome features and phylogenetic relationships in scorpions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.