Abstract

MicroRNAs (miRNAs) are a class of endogenous non-coding small RNAs of 18–22-nucleotides in length that regulate gene expression at the post-transcriptional level. The objective of this study was to examine the differences in the miRNA expression profiles of the lungs and trachea of beagle dogs infected with canine influenza virus (CIV). Total RNA was isolated from lung and trachea tissues of beagle dogs infected and non-infected with H3N2 CIV at 4dpi. A total of 41,512,315 and 39,107,475 reads were obtained from the lung and trachea, respectively. Out of a total 288 dog miRNAs available in miRBase, 227 and 236 miRNAs were detected in the infected (Fg) and the non-infected lungs (Fc), respectively, whereas 242 miRNAs were detected in both the infected (Qg) and the non-infected trachea (Qc). From these, 34 and 45 miRNAs were differentially expressed in the lungs and trachea between the infected and non-infected dogs, respectively. More miRNAs were highly expressed in the non-infected tissues than in the infected tissues. miR-143 was the most abundantly expressed miRNA in the four samples, followed by let-7. In total, 252, 234, 196 and 235 novel miRNAs were identified in the Fc, Fg, Qc, and Qg groups, respectively. To our knowledge, this is the first study examining the miRNA gene expression in CIV infected dogs using the Solexa sequencing approach. We have revealed the existence of a large number miRNAs that are affected by CIV infection as well as identified some potentially new miRNAs. These findings will help us better understand the host-CIV interaction and its relationship to pathogenesis, as well as contribute to the prevention and control of CIV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.