Abstract

Baijiu is a unique alcoholic beverage in China, prepared through a traditional solid-state fermentation process. Daqu, recognized as the earliest form of crude enzyme preparation, plays a crucial role in determining the quality of Baijiu. Due to the enzymatic process derived from natural fermentation, the differences between regions were expected to occur. To compare regional-difference in microbial diversity and the functional profile of Daqu, metagenomic sequencing, physicochemical analysis, and electronic sensory evaluation were utilized. The results showed that bacteria and fungi were the main microbes in low-temperature Daqu (LTD), and their ratio of abundance was approximately 9:1. Streptomyces (20.27 %) and Bacillus licheniformis (15.28 %) emerged as the most dominant microbes in LTD at the genus and species levels, respectively. The overall microbial communities and functional profiles of Daqu between the two regions exhibited significant differences (P < 0.05). Bacillus licheniformis was significantly enriched in LTD from Taiyuan (P < 0.05) and mainly contributed to the saccharifying power, fermenting power, esterifying power, and liquefying power of LTD, demonstrating its important role in maintaining LTD quality. LTD from Taiyuan had a significantly higher fermenting power, esterifying power, and liquefying power than LTD from Suizhou (P < 0.05). In addition, a higher abundance of genes responsible for lactate production was detected in LTD from Suizhou, whereas genes associated with acetate production were enriched in LTD from Taiyuan. Collectively, these findings indicated that lactic acid bacteria may play a more important role in LTD from Suizhou, whereas acetate-producing bacteria may have a greater contribution to LTD from Taiyuan. This study provides a reference for microbial regulation during the production process of Daqu, and control of quality and traceability of the origin of Daqu.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.