Abstract

Medical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons. The virus was swiftly gone viral around the world and a lot of fatalities and cases growing were recorded on a daily basis. CXR can be used to monitor the effects of COVID-19 on lung tissue. This study examines a comparison analysis of k-nearest neighbors (KNN), Extreme Gradient Boosting (XGboost), and Support-Vector Machine (SVM) are some classification approaches for feature selection in this domain using The Moth-Flame Optimization algorithm (MFO), The Grey Wolf Optimizer algorithm (GWO), and The Glowworm Swarm Optimization algorithm (GSO). For this study, researchers employed a data set consisting of two sets as follows: 9,544 2D X-ray images, which were classified into two sets utilizing validated tests: 5,500 images of healthy lungs and 4,044 images of lungs with COVID-19. The second set includes 800 images, 400 of healthy lungs and 400 of lungs affected with COVID-19. Each image has been resized to 200x200 pixels. Precision, recall, and the F1-score were among the quantitative evaluation criteria used in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call