Abstract

The paper presents a comparative analysis of methods and results of calculating the physical and mechanical characteristics of single-layered and multi-layered polymer composite materials (PCM). The object of the study is a polymer composite which consists of epoxy binder and carbon fiber reinforcements. The principle of multiscale modelling is applied to determine the physical and mechanical characteristics of the composite. Within the framework of this study, a representative volume element (RVE), the structure of which corresponds the characteristics of real materials, is used. The initial data for the calculation in this case are physical and mechanical characteristics of anisotropic fibers (carbon fabric) and an isotropic binder, as well as the geometric model of the RVE. As a result of the calculation, the effective characteristics of a quasi-homogeneous anisotropic material suitable for numerical analysis of the composite structures are determined. A comparison of the results of determining the physical and mechanical characteristics of the polymer composite using ANSYS Material Designer and MSC Digimat software packages for various size of RVE model is carried out and ANSYS Workbench software is also used to perform the stress-strain conditions of RVE model to determine the physico-mechanical characteristics of polymer composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.