Abstract

Chickpea (Cicer arietinum L.) is a good source of nutrients for animals and human consumption. In the present study, we analyzed the anthocyanin and total phenolic contents in two contrasting (desi and kabuli) chickpea cultivars. The quantification of anthocyanins showed higher amount in desi as compared to kabuli chickpea. The total phenolic contents was estimated in desi and kabuli chickpea using two different solvents (50% Acetone and 70% Methanol extracts) for coverage of all potential phenolic compounds. In continuation, desi chickpea culitvars (himchana and ICC4958) were found to be significantly higher total phenolic contents (in both solvent extracts) as compared to kabuli cultivars (JGK-03 and L-552). Higher phenolic contents was found to be directly correlated to higher anthocyanin contents in desi as compared to kabuli chickpea. The volatile organic compounds were also analyzed using gas chromatography mass spectroscopy technique in both cultivars. The significant compositional differences in volatile organic composition (polar and non-polar) of desi and kabuli cultivars were also found to be noticed using two different solvent extractions (methanol and chloroform). The comparative analysis of volatile organic acids in methanolic and chloroform extracts of desi cultivars (himchana and ICC4958), kabuli cultivars (JGK-03 and L-552) and between desi and kabuli cultivars was also carried out for in-depth understanding of the differential patterns of low molecular weight metabolites. Six metabolites were found to be common in all four selected cultivars in chloroform extracted samples, while four were found to be common in all four selected cultivars in methanolic extracted samples. The remaining detected metabolites are uncommon among different cultivars and represented as cultivar specific signatory metabolites. In conclusion, the present investigation revealed higher anthocyanin and phenolic contents in desi cultivars as compared to kabuli cultivars and differential accumulation of volatile organic compounds in chickpea cultivars. The metabolite alterations among desi and chickpea cultivars could be the potential attribute for diversity, resilience and commercial usuages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.