Abstract
ABSTRACT Malassezia furfur is a yeast species belonging to Malasseziomycetes, Ustilaginomycotina and Basidiomycota that is found on healthy warm-blooded animal skin, but also involved in various skin disorders like seborrheic dermatitis/dandruff and pityriasis versicolor. Moreover, Malassezia are associated with bloodstream infections, Crohn's disease and pancreatic carcinoma. Recent advances in Malassezia genomics and genetics have focused on the nuclear genome. In this work, we present the M. furfur mitochondrial (mt) genetic heterogenicity with full analysis of 14 novel and six available M. furfur mt genomes. The mitogenome analysis reveals a mt gene content typical for fungi, including identification of variable mt regions suitable for intra-species discrimination. Three of them, namely the trnK–atp6 and cox3–nad3 intergenic regions and intron 2 of the cob gene, were selected for primer design to identify strain differences. Malassezia furfur strains belonging to known genetic variable clusters, based on AFLP and nuclear loci, were assessed for their mt variation using PCR amplification and sequencing. The results suggest that these mt regions are excellent molecular markers for the typing of M. furfur strains and may provide added value to nuclear regions when assessing evolutionary relationships at the intraspecies level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.