Abstract

Abstract The article presents research conducted with the project: ‘Additive manufacturing in conduction with optical methods used for optimization of 3D models’’ [2]. The article begins with the description of properties of the materials used in three different additive technologies – Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS) and Material Jetting (MJ). The next part focuses on the comparative analysis of macro- and microstructure of specimens printed in order to test selected materials in additive technologies mentioned above. In this research two types of specimens were used: dumbbell specimens and rectangular prism with hole specimens. In order to observe macrostructure specimens, they were subjected to load test until it broke. In the case of observing microstructure, they were cut in some places. Each of described additive technologies characterizes by both different way of printing and used materials. These variables have a significant influence on macro- and microstructure and fracture appearance. FDM technology specimens printed of ABS material characterized by texture surface appearance. SLS technology specimens printed of PA12 material characterized by amorphous structure. MJ technology specimens printed of VeroWhite Plus material characterized by fracture appearance which had quasi- fatigue features. The microstructure of these specimens was uniform with visible inclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call