Abstract
Detection of disease at earlier stages is the most challenging one. Datasets of different diseases are available online with different number of features corresponding to a particular disease. Many dimensionality reduction and feature extraction techniques are used nowadays to reduce the number of features in dataset and finding the most appropriate ones. This paper explores the difference in performance of different machine learning models using Principal Component Analysis dimensionality reduction technique on the datasets of Chronic kidney disease and Cardiovascular disease. Further, the authors apply Logistic Regression, K Nearest Neighbour, Naïve Bayes, Support Vector Machine and Random Forest Model on the datasets and compare the performance of the model with and without PCA. A key challenge in the field of data mining and machine learning is building accurate and computationally efficient classifiers for medical applications. With an accuracy of 100% in chronic kidney disease and 85% for heart disease, KNN classifier and logistic regression were revealed to be the most optimal method of predictions for kidney and heart disease respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.