Abstract

Eutrophication is a serious threat to water quality and human health, and chlorophyll-a (Chla) is a key indicator to represent eutrophication in rivers or lakes. Understanding the spatial-temporal distribution of Chla and its accurate prediction are significant for water system management. In this study, spatial-temporal analysis and correlation analysis were applied to reveal Chla concentration pattern in the Fuchun River, China. Then four exogenous variables (wind speed, water temperature, dissolved oxygen and turbidity) were used for predicting Chla concentrations by six models (3 traditional machine learning models and 3 deep learning models) and compare the performance in a river with different hydrology characteristics. Statistical analysis shown that the Chla concentration in the reservoir river segment was higher than in the natural river segment during August and September, while the dominant algae gradually changed from Cyanophyta to Cryptophyta. Moreover, air temperature, water temperature and dissolved oxygen had high correlations with Chla concentrations among environment factors. The results of the prediction models demonstrate that extreme gradient boosting (XGBoost) and long short-term memory neural network (LSTM) were the best performance model in the reservoir river segment (NSE = 0.93; RMSE = 4.67) and natural river segment (NSE = 0.94; RMSE = 1.84), respectively. This study provides a reference for further understanding eutrophication and early warning of algal blooms in different type of rivers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.