Abstract

Autonomous vehicles are the future of automotive engineering and understanding how this systems work is critical. In these vehicles, controller models are usually needed to generate signals that would normally be imposed by the driver e.g., steering angles, acceleration inputs and braking commands. Intuitively, each control method utilized has its peculiarities and presents different behaviours. In such situation, this paper aims to develop an error comparison between a car displacement and its reference path due the use of two different predictive driver controllers: The proportional-integrative and the MacAdam model. For this purpose, a 14 degrees of freedom vehicle model is used with the aid of MATLAB Simulink, whereas simulations were made using the double-lane change manoeuvre, a commonly used manoeuvre to analyse the vehicle dynamics performance. At the end of this paper, lateral acceleration, displacement and steering wheel angle analysis led the conclusion that the vehicle behaviour is smoother with the use of the proportional-integrative control regardless of longitudinal velocity. Nevertheless, the trajectory error is smaller for MacAdam model than PI controller is and therefore it is easier to follow the reference path with this one, although in aggressive maneuverers it can cause more discomfort and increase the risk of rolling when compared to the PI controller in a vehicle with the same body stiffness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.