Abstract

It is well known that fluorocarbon electrets, although thermally very stable, suffer a surface potential decay if exposed to high temperatures. This potential decay is of considerable interest in applications, for example, in the so-called prepolarized microphones. As a result, these devices suffer a loss in sensitivity approximately proportional to the decay of the electret surface potential. Since the potential and the related sensitivity losses are very slow at room temperature, a common approach in the literature is to perform accelerated isothermal depolarization experiments at elevated temperatures, and extrapolate the results to lower temperatures by assuming an Arrhenius-type behavior. In this paper, we investigate experimentally the potential decay of differently pre-annealed fluoroethylenepropylene electrets of different thicknesses, as well as the drop of sensitivity of commercially available measurement microphones from several manufacturers by the exposure to an ambient temperature of 95 °C for up to three years. Until now, no other reports compare electret and microphone decays over such a long period. The experimental data presented here could not be fitted with only one exponential decay function over the whole time-span investigated. However, assuming two or more discharge processes results in a good agreement between measurement and model functions. The time constants of these decay processes are specified in the text.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.