Abstract

PurposeHyaluronic acid (HA) is the most common injectable dermal filler used for soft-tissue augmentation, and can be removed non-surgically by directly injecting hyaluronidase. In this study, the hyaluronidase-mediated degradation of different types of HA fillers implanted subcutaneously at the back of hairless mice having filler residence time of four days or three months were compared.MethodsTwo sites at the back of female hairless mice were subcutaneously implanted with 0.1-mL of one of the seven HA fillers (NLL, NL, NDL, NVL, and ND, JUVX+, and RESLYFT) and injected with 30 IU or 60 IU hyaluronidase per 0.1-mL filler after reaching a filler residence time of 4 or 91 days, respectively. Filler bolus projection was measured using three-dimensional optical imaging over a 72 h period, and the implantation sites were histologically examined 2 weeks after hyaluronidase injection.ResultsFollowing hyaluronidase injection, all seven HA fillers showed a rapid decrease of filler volume within 24 h, and complete degradation was confirmed by histological examination after 2 weeks. There was no significant difference in filler volume reduction rate among the seven HA fillers, and no evidence of macroscopic or microscopic adverse effects were observed at the implantation sites.ConclusionAll seven HA fillers show comparable susceptibility to hyaluronidase-mediated degradation. HA fillers with prolonged filler residence time may require a higher dose of hyaluronidase to achieve efficient degradation owing to tissue integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.