Abstract

Optimizing the mix composition of alkali-activated materials is sometimes overwhelming due to the higher number of potential parameters that could be varied compared to designing a mix based on Portland cement. The present work focuses on understanding the correlations between compressive strength, bound water content, and heat release from the calorimeter. Different slag and fly ash proportions are studied at two different solution-to-binder (S/B) ratios. Alkali solutions are made with 5 M NaOH and water glass to have a final silica modulus of 1.28. Results indicate that, at similar S/B ratios, mixes with high amounts of slag develop high compressive strength corresponding to high bound water contents until 28 days and high heat release until 7 days. A good correlation exists between compressive strength with cumulative heat release and bound water content when the water-to-solid ratio of the initial mixture is also considered. These findings promise a less tedious method that could be employed to optimize the process for the mix design of alkali-activated materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.