Abstract

IntroductionKnowing the repertoire of cell signaling receptors would provide pivotal insight into the developmental and regenerative capabilities of bone marrow cell (BMC)-derived hematopoietic stem/progenitor cells (HSPCs) and bone marrow mesenchymal stromal cells (BMMSCs).MethodsMurine HSPCs were enriched from fluorescence-activated cell sorting (FACS)-sorted Lin–c-Kit+Sca-1+ BMCs isolated from the tibia and femoral marrow compartments. Purified BMMSCs (CD73+, CD90+, CD105+, and CD45–, CD34–, CD31–, c-Kit–) with extensive self-renewal potential and multilineage differentiation capacity (into different mesodermal cell lineages including osteocytes, chrondrocytes, adipocytes) were derived from adherent BMC cultures after CD45+ cell depletion. Adherent colony-forming cells were passaged two to three times and FACS analysis was used to assess cell purity and validate cell-specific surface marker phenotype prior to experimentation. Gene transcripts for a number of cell signaling molecules were assessed using a custom quantitative real-time RT-PCR low-density microarray (94 genes; TaqMan® technology).ResultsWe identified 16 mRNA transcripts that were specifically expressed in BMC-derived HSPC (including Ptprc, c-Kit, Csf3r, Csf2rb2, Ccr4, Cxcr3 and Tie-1), and 14 transcripts specifically expressed in BMMSCs (including Pdgfra, Ddr2, Ngfr, Mst1r, Fgfr2, Epha3, and Ephb3). We also identified 27 transcripts that were specifically upregulated (≥2-fold expression) in BMMSCs relative to HSPCs (Axl, Bmpr1a, Met, Pdgfrb, Fgfr1, Mertk, Cmkor1, Egfr, Epha7, and Ephb4), and 19 transcripts that were specifically upregulated in HSPCs relative to BMMSCs (Ccr1, Csf1r, Csf2ra, Epor, IL6ra, and IL7r). Eleven transcripts were equally expressed (<2-fold upregulation) in HSPCs and BMMSCs (Flt1, Insr, Kdr, Jak1, Agtrl1, Ccr3, Ednrb, Il3ra, Hoxb4, Tnfrsf1a, and Abcb1b), whilst another seven transcripts (Epha6, Epha8, Musk, Ntrk2, Ros1, Srms, and Tnk1) were not expressed in either cell population.ConclusionsWe demonstrate that besides their unique immunophenotype and functional differences, BMC-derived HSPCs and BMMSCs have different molecular receptor signaling transcript profiles linked to cell survival, growth, cell differentiation status, growth factor/cytokine production and genes involved in cell migration/trafficking/adhesion that may be critical to maintain their pluripotency, plasticity, and stem cell function.

Highlights

  • Knowing the repertoire of cell signaling receptors would provide pivotal insight into the developmental and regenerative capabilities of bone marrow cell (BMC)-derived hematopoietic stem/progenitor cells (HSPCs) and bone marrow mesenchymal stromal cells (BMMSCs)

  • We identified 16 mRNA transcripts that were expressed in BMC-derived HSPC, and 14 transcripts expressed in BMMSCs

  • We identified 27 transcripts that were upregulated (≥2-fold expression) in BMMSCs relative to HSPCs (Axl, Bmpr1a, Met, Pdgfrb, Fgfr1, Mertk, Cmkor1, Egfr, Epha7, and Ephb4), and 19 transcripts that were upregulated in HSPCs relative to BMMSCs (Ccr1, Csf1r, Csf2ra, Epor, IL6ra, and IL7r)

Read more

Summary

Introduction

Knowing the repertoire of cell signaling receptors would provide pivotal insight into the developmental and regenerative capabilities of bone marrow cell (BMC)-derived hematopoietic stem/progenitor cells (HSPCs) and bone marrow mesenchymal stromal cells (BMMSCs). Purified BMMSCs (CD73+, CD90+, CD105+, and CD45–, CD34–, CD31–, c-Kit–) with extensive self-renewal potential and multilineage differentiation capacity (into different mesodermal cell lineages including osteocytes, chrondrocytes, adipocytes) were derived from adherent BMC cultures after CD45+ cell depletion. Adult stem cells are rare cell populations within specific tissues defined by their ability to undergo both self-renewal and differentiation. Hematopoietic stem/progenitor cells (HSPCs) are functionally defined by their ability to self-renew and to contribute to all mature blood cell lineages [3]. Bone marrow and virtually all postnatal tissues contain small numbers of self-renewal multipotent adherent stromal– mesenchymal stem cells (MSCs) that have the potential to give rise to cells of diverse cell lineages, play a pivotal role in tissue repair–regeneration and have demonstrated nonimmunogenicity and potent immunomodulatory effects [8,9,10]. Bone marrow-derived MSC (BMMSCs) have been shown to facilitate the in vivo engraftment of HSPCs and expansion of HSPCs in co-culture systems when used as feeder cells [11,12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call