Abstract

Myricetin is a flavonol with high antioxidant properties. In this research, the fluorescence emission of myricetin powder and its solutions in different solvents were measured and analyzed by comparing with the results of calculations. Comparison of the calculated and measured characteristic wavelengths allowed the identification of all the spectral features in the fluorescence spectra of myricetin powder and solutions with different concentrations. The computation was based on modeling the process of the excited state intermolecular proton transfer, which predicts the formation of tautomeric forms of the flavonol molecule. Characteristic emission wavelengths were obtained using TDDFT/M06-2X/6-31++G(d,p). To understand the influence of the hydroxyl groups in the B-ring of the flavonol molecule on the emission spectrum, we also compared the fluorescence spectra of myricetin with those of kaempferol and quercetin. Moreover, based on the analysis of the changes in the shape of the FL spectra with the concentration of the solution, a criterion for the complete dissolution of the flavonol powders was established, which is important for bioavailability of flavonoids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.