Abstract

Whole genome sequencing analyses of 1,504 fast-neutron (FN)-induced mutants of ‘Kitaake’ rice variety have revealed a new mutant population covering 58.6% of transposable element (TE) genes and 47.6% of non-TE genes throughout the rice genome. Mutation rate for TE gene is much higher in FN-induced mutants (58.6%) than in flanking sequence tag (FST) population (25.7%), implying that the former are more randomly generated than the latter. By adding this resource to FST population, we found that the mutation rate for the rice genome increases from 53.1% to 78.1% and more importantly, the rate with multiple alleles increases from 35.2% to 56.1%. To test the functional significance of mutants produced by both FN-induction and T-DNA/transposon insertions, we analyzed the coverage of functionally characterized genes by using the Overview of functionally characterized Genes in Rice Online database (OGRO, http://qtaro.abr.affrc.go.jp/ogro/table). These combined genetic resources cover the mutations for 90.9% of functionally characterized genes for morphological traits, 91.0% for physiological traits, and 92.6% for resistance or tolerance traits, indicating that a gene-indexed mutant population that includes FN-induced mutants is valuable to future research for improving most of the important agronomic traits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.