Abstract

Breast cancer (BC) is considered the world's most prevalent cancer. Early diagnosis of BC enables patients to receive better care and treatment, hence lowering patient mortality rates. Breast lesion identification and classification are challenging even for experienced radiologists due to the complexity of breast tissue and variations in lesion presentations. This work aims to investigate appropriate features and classification techniques for accurate breast cancer detection in 336 Biglycan biomarker images. The Biglycan biomarker images were retrieved from the Mendeley Data website (Repository name: Biglycan breast cancer dataset). Five features were extracted and compared based on shape characteristics (i.e., Harris Points and Minimum Eigenvalue (MinEigen) Points), frequency domain characteristics (i.e., The Two-dimensional Fourier Transform and the Wavelet Transform), and statistical characteristics (i.e., histogram). Six different commonly used classification algorithms were used; i.e., K-nearest neighbours (k-NN), Naïve Bayes (NB), Pseudo-Linear Discriminate Analysis (pl-DA), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF). The histogram of greyscale images showed the best performance for the k-NN (97.6%), SVM (95.8%), and RF (95.3%) classifiers. Additionally, among the five features, the greyscale histogram feature achieved the best accuracy in all classifiers with a maximum accuracy of 97.6%, while the wavelet feature provided a promising accuracy in most classifiers (up to 94.6%). Machine learning demonstrates high accuracy in estimating cancer and such technology can assist doctors in the analysis of routine medical images and biopsy samples to improve early diagnosis and risk stratification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.