Abstract

Intercropping is a high-yield, resource-efficient planting method. There is a large gap between actual yield and potential yield at farmer's field. Their actual yield of intercropped maize remains unclear under low solar radiation-area, whether this yield can be improved, and if so, what are the underlying mechanism for increasing yield? In the present study, we collected the field management and yield data of intercropping maize by conducting a survey comprising 300 farmer households in 2016-2017. Subsequently, based on surveyed data, we designed an experiment including a high density planting (Dense cultivation and high N fertilization with plough tillage; DC) and normal farmer practice (Common cultivation; CC) to analyze the yield, canopy structure, light interception, photosynthetic parameters, and photosynthetic productivity. Most farmers preferred rotary tillage with a low planting density and N fertilization. Survey data showed that farmer yield ranged between 4-6 Mg ha-1, with highest yield recorded at 10-12 Mg ha-1, suggesting a possibility for yield improvement by improved cropping practices. Results from high density experiment showed that the two-years average yield for DC was 28.8% higher than the CC. Compared to CC, the lower angle between stem and leaf (LA) and higher leaf area index (LAI) in DC resulted in higher light interception in middle canopy and increased the photosynthetic productivity under DC. Moreover, in upper and lower canopies, the average activity of phosphoenolpyruvate (PEP) carboxylase was 70% higher in DC than CC. Briefly, increase in LAI and high Pn improved both light interception and photosynthetic productivity, thereby mediating an increase in the maize yield. Overall, these results indicated that farmer's yields on average can be increased by 2.1 Mg ha-1 by increasing planting density and N fertilization, under plough tillage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.