Abstract
Two distinct caulimoviruses, Dahlia mosaic virus (DMV) and Dahlia common mosaic virus, and an endogenous plant pararetroviral sequence (DvEPRS) were reported in Dahlia spp. DvEPRS, previously referred to as DMV-D10, was originally identified in the US from the cultivated Dahlia variabilis, and has also been found in New Zealand, Lithuania and Egypt, as well as in wild dahlia species growing in their natural habitats in Mexico. Sequence analysis of three new EPRSs from cultivated dahlias from Lithuania [D10-LT; 7,159 nucleotide level (nt)], New Zealand (D10-NZ, 7,156 nt), and the wild species, Dahlia rupicola, from Mexico (D10-DR, 7,133 nt) is reported in this study. The three EPRSs have the structure and organization typical of a caulimovirus species and showed identities among various open reading frames (ORFs) ranging between 71 and 97 % at the nt when compared to those or the known DvEPRS from the US. Examination of a dataset of seven full-length EPRSs obtained to date from cultivated and wild Dahlia spp. provided clues into genetic diversity of these EPRSs from diverse sources of dahlia. Phylogenetic analyses, mutation frequencies, potential recombination events, selection, and fitness were evaluated as evolutionary evidences for genetic variation. Assessment of all ORFs using phylogenomic and population genetics approaches suggests a wide genetic diversity of EPRSs occurring in dahlias. Phylogenetic analyses show that the EPRSs from various sources form one clade indicating a lack of clustering by geographical origin. Grouping of various EPRSs into two host taxa (cultivated vs. wild) shows little divergence with respect to their origin. Population genetic parameters demonstrate negative selection for all ORFs, with the reverse transcriptase region more variable than other ORFs. Recombination events were found which provide evolutionary evidence for genetic diversity among dahlia-associated EPRSs. This study contributes to an increased understanding of molecular population genetics and evolutionary pathways of these reverse transcribing viral elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.