Abstract

In the present work, the channels of single-walled carbon nanotubes (SWCNTs) were filled with tin sulfide (SnS), gallium telluride (GaTe), and bismuth selenide (Bi2Se3). The successful encapsulation of the compounds was proven by high-resolution transmission electron microscopy. The electronic properties of the filled SWCNTs were studied by optical absorption spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was found that the embedded metal chalcogenides have different influence on the electronic properties of the nanotubes. The incorporation of tin sulfide into the SWCNTs does not result in sufficient changes in the electronic structure of SWCNTs, except for a minor influence on metallic nanotubes. The filling of SWCNTs with gallium telluride causes the charge transfer from the SWCNT walls to the encapsulated compound due to acceptor doping of the nanotubes. The insertion of bismuth selenide inside the SWCNT channels does not lead to the modification of the electronic properties of nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.