Abstract
The performance of distributed PV systems is often hindered by edge soiling, mainly due to the challenges associated with centralized cleaning. In recent years, half-cell modules have gained popularity over conventional full-cell modules due to their potential for improved performance. However, limited research has been conducted to compare the effects of edge soiling on full-cell and half-cell modules, particularly in various mounting orientations. Furthermore, there is a scarcity of methods that integrate simulation and experimentation to analyze the characteristics of shaded PV modules. This study aims to optimize module selection and mounting orientation to mitigate the impact of edge soiling. Simulated models and experimental setups were developed for both full-cell and half-cell modules in both landscape and portrait orientations. The results reveal that the degree of shading correlates with the ratio of shaded substrings within a module. In addition, module performance can be significantly enhanced by altering the mounting orientation. Specifically, the findings demonstrate that half-cell modules outperform full-cell modules when mounted in the portrait orientation. However, in the landscape orientation, the advantage of half-cell modules diminishes. Remarkably, the choice of mounting orientation is found to be contingent on the severity of edge soiling for half-cell modules. This work significantly contributes to the understanding of shading effects in PV systems and offers practical guidance for optimizing distributed PV systems against edge soiling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.