Abstract

BackgroundCell viability and motility comprise ubiquitous mechanisms involved in a variety of (patho)biological processes including cancer. We report a technical comparative analysis of the novel impedance-based xCELLigence Real-Time Cell Analysis detection platform, with conventional label-based endpoint methods, hereby indicating performance characteristics and correlating dynamic observations of cell proliferation, cytotoxicity, migration and invasion on cancer cells in highly standardized experimental conditions.Methodology/Principal FindingsDynamic high-resolution assessments of proliferation, cytotoxicity and migration were performed using xCELLigence technology on the MDA-MB-231 (breast cancer) and A549 (lung cancer) cell lines. Proliferation kinetics were compared with the Sulforhodamine B (SRB) assay in a series of four cell concentrations, yielding fair to good correlations (Spearman's Rho 0.688 to 0.964). Cytotoxic action by paclitaxel (0–100 nM) correlated well with SRB (Rho>0.95) with similar IC50 values. Reference cell migration experiments were performed using Transwell plates and correlated by pixel area calculation of crystal violet-stained membranes (Rho 0.90) and optical density (OD) measurement of extracted dye (Rho>0.95). Invasion was observed on MDA-MB-231 cells alone using Matrigel-coated Transwells as standard reference method and correlated by OD reading for two Matrigel densities (Rho>0.95). Variance component analysis revealed increased variances associated with impedance-based detection of migration and invasion, potentially caused by the sensitive nature of this method.Conclusions/SignificanceThe xCELLigence RTCA technology provides an accurate platform for non-invasive detection of cell viability and motility. The strong correlations with conventional methods imply a similar observation of cell behavior and interchangeability with other systems, illustrated by the highly correlating kinetic invasion profiles on different platforms applying only adapted matrix surface densities. The increased sensitivity however implies standardized experimental conditions to minimize technical-induced variance.

Highlights

  • Among the most fundamental hallmarks of cancer are loss of pre-existing tissue architecture by sustained proliferation and extracellular matrix infiltration of cancer cells

  • Proliferation The dynamic assessment of proliferation kinetics was modeled by performing sulforhodamine B (SRB) testing on both MDA-MB-231 and A549 cells

  • Discussion xCELLigence technology measures impedance changes in a meshwork of interdigitated gold microelectrodes located at the well bottom (E-plate) or at the bottom side of a microporous membrane (CIM16-plate)

Read more

Summary

Introduction

Among the most fundamental hallmarks of cancer are loss of pre-existing tissue architecture by sustained proliferation and extracellular matrix infiltration of cancer cells. We report data of in vitro assessment of four cellular processes (proliferation, cytotoxicity, migration and invasion) on the MDA-MB-231 and A549 cancer cell lines using xCELLigence RTCA DP (Roche Applied Science) in comparison with data resulting from parallel experiments applying a previously existing and well-established measuring method (to be considered as a ‘‘gold standard’’ method) for each process. Both these cell lines are extensively characterized and used as models representing two different highly incidental tumor types (breast cancer, lung cancer). Results from ‘‘tried-and-tested’’ assay setups are confronted with parallel data recorded using a novel, commercially available technology, providing an objective technical comparison of dynamic observations on cultured cells in highly standardized experimental conditions

Results
Discussion
Materials and Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.