Abstract

The influence of different joining techniques on passive fit at the interface structure/abutment of cobalt-chromium (Co-Cr) superstructures has not yet been clearly established. The purpose of this study was to compare 3 different techniques of joining Co-Cr superstructures by measuring the resulting marginal misfit in a simulated prosthetic assembly. A specially designed metal model was used for casting, sectioning, joining, and measuring marginal misfit. Forty-five cast bar-type superstructures were fabricated in a Co-Cr alloy and randomly assigned by drawing lots to 3 groups (n=15) according to the joining method used: conventional gas-torch brazing (G-TB), laser welding (LW), and tungsten inert gas welding (TIG). Joined specimens were assembled onto abutment analogs in the metal model with the 1-screw method. The resulting marginal misfit was measured with scanning electron microscopy (SEM) at 3 different points: distal (D), central (C), and mesial (M) along the buccal aspect of both abutments: A (tightened) and B (without screw). The Levene test was used to evaluate variance homogeneity and then the Welsch ANOVA for heteroscedastic data (α=.05). Significant differences were found on abutment A between groups G-TB and LW (P=.013) measured mesially and between groups G-TB and TIG (P=.037) measured centrally. On abutment B, significant differences were found between groups G-TB and LW (P<.001) and groups LW and TIG (P<.001) measured mesially; groups G-TB and TIG (P=.007) measured distally; and groups G-TB and TIG (P=.001) and LW and TIG (P=.007) measured centrally. The method used for joining Co-Cr prosthetic structures had an influence on the level of resulting passive fit. Structures joined by the tungsten inert gas method produced better mean results than did the brazing or laser method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call