Abstract

AbstractWe test and compare a number of existing models predicting the location of magnetic reconnection at Earth's dayside magnetopause for various solar wind conditions. We employ robust image processing techniques to determine the locations where each model predicts reconnection to occur. The predictions are then compared to the magnetic separators, the magnetic field lines separating different magnetic topologies. The predictions are tested in distinct high‐resolution simulations with interplanetary magnetic field (IMF) clock angles ranging from 30 to 165° in global magnetohydrodynamic simulations using the three‐dimensional Block Adaptive Tree Solarwind Roe‐type Upwind Scheme code with a uniform resistivity, although the described techniques can be generally applied to any self‐consistent magnetosphere code. Additional simulations are carried out to test location model dependence on IMF strength and dipole tilt. We find that most of the models match large portions of the magnetic separators when the IMF has a southward component, with the models saying reconnection occurs where the local reconnection rate and reconnection outflow speed are maximized performing best. When the IMF has a northward component, none of the models tested faithfully map the entire magnetic separator, but the maximum magnetic shear model is the best at mapping the separator in the cusp region where reconnection has been observed. Predictions for some models with northward IMF orientations improve after accounting for plasma flow shear parallel to the reconnecting components of the magnetic fields. Implications for observations are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.