Abstract

Software defined networking implements the network control plane in an external entity, rather than in each individual device as in conventional networks. This architectural difference implies a different design for control functions necessary for essential network properties, e.g., loop prevention and link redundancy. We explore how such differences redefine the security weaknesses in the SDN control plane and provide a framework for comparative analysis which focuses on essential network properties required by typical production networks. This enables analysis of how these properties are delivered by the control planes of SDN and conventional networks, and to compare security threats and mitigations. Despite the architectural difference, we find similar, but not identical, exposures in control plane security if both network paradigms provide the same network properties and are analyzed under the same threat model. However, defenses vary; SDN cannot depend on edge based filtering to protect its control plane, while this is arguably the primary defense in conventional networks. Our concrete security analysis suggests that a distributed SDN architecture that supports fault tolerance and consistency checks is important for SDN control plane security. Our analysis methodology may be of independent interest for future security analysis of SDN and conventional networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.