Abstract

Bougainvillea (Nyctaginaceae) is a popular ornamental plant group primarily grown for its striking colorful bracts. However, despite its established horticultural value, limited genomic resources and molecular studies have been reported for this genus. Thus, to address this existing gap, complete chloroplast genomes of four species (Bougainvillea glabra, Bougainvillea peruviana, Bougainvillea pachyphylla, Bougainvillea praecox) and one Bougainvillea cultivar were sequenced and characterized. The Bougainvillea cp genomes range from 153,966 bp to 154,541 bp in length, comprising a large single-copy region (85,159 bp–85,708 bp) and a small single-copy region (18,014 bp–18,078 bp) separated by a pair of inverted repeats (25,377–25,427 bp). All sequenced plastomes have 131 annotated genes, including 86 protein-coding, eight rRNA, and 37 tRNA genes. These five newly sequenced Bougainvillea cp genomes were compared to the Bougainvillea spectabilis cp genome deposited in GeBank. The results showed that all cp genomes have highly similar structures, contents, and organization. They all exhibit quadripartite structures and all have the same numbers of genes and introns. Codon usage, RNA editing sites, and repeat analyses also revealed highly similar results for the six cp genomes. The amino acid leucine has the highest proportion and almost all favored synonymous codons have either an A or U ending. Likewise, out of the 42 predicted RNA sites, most conversions were from serine (S) to leucine (L). The majority of the simple sequence repeats detected were A/T mononucleotides, making the cp genomes A/T-rich. The contractions and expansions of the IR boundaries were very minimal as well, hence contributing very little to the differences in genome size. In addition, sequence variation analyses showed that Bougainvillea cp genomes share nearly identical genomic profiles though several potential barcodes, such as ycf1, ndhF, and rpoA were identified. Higher variation was observed in both B. peruviana and B. pachyphylla cp sequences based on SNPs and indels analysis. Phylogenetic reconstructions further showed that these two species appear to be the basal taxa of Bougainvillea. The rarely cultivated and wild species of Bougainvillea (B. pachyphylla, B. peruviana, B. praecox) diverged earlier than the commonly cultivated species and cultivar (B. spectabilis, B. glabra, B. cv.). Overall, the results of this study provide additional genetic resources that can aid in further phylogenetic and evolutionary studies in Bougainvillea. Moreover, genetic information from this study is potentially useful in identifying Bougainvillea species and cultivars, which is essential for both taxonomic and plant breeding studies.

Highlights

  • The family Nyctaginaceae, distributed primarily in the tropics and subtropics, contains around400 species of trees, shrubs, and herbs classified in ca. 31 genera [1,2]

  • The commonly cultivated Bougainvillea spectabilis and Bougainvillea glabra have the largest cp genomes, but despite the differences in size, all cp genomes have a total of 131 genes, including 86 protein-coding genes, eight rRNA, and 37 tRNA

  • The numbers of rRNA and tRNA genes are highly conserved among Nyctaginaceae, but the number of protein-coding genes differs due to acetyl-CoA carboxylase subunit D gene loss in some genera

Read more

Summary

Introduction

The family Nyctaginaceae, distributed primarily in the tropics and subtropics, contains around400 species of trees, shrubs, and herbs classified in ca. 31 genera [1,2]. The family Nyctaginaceae, distributed primarily in the tropics and subtropics, contains around. One of the most popular genera in Nyctaginaceae is Bougainvillea, a tropical and subtropical shrubby vine cultivated primarily for its colorful showy bracts. Their vibrant structures often mistaken as “flowers” are bracts or specialized leaves Due to Bougainvillea’s growth habit and attractive bracts, it became a widely known plant for landscaping [4]. It is commonly used in gardens as hedges or barriers, topiaries, and as ground cover on banks

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.