Abstract

Float glass has immense applications such as sensor glass, micro-processor glass and decorative glass; because of its exceptional wear resistance, chemical and thermal characteristics. Nevertheless, researchers are still bearing decisive issues, which affect its application. These issues are profile inaccuracy and chipping because of its poor machining characteristics and hence high precision machining. The objective of the present study is to condemn the chipping related hindrances while using multi-shaped diamond abrasive tools to create blind holes. The tools, which applied, are named as hollow abrasive tool, pinpointed conical tool, flat cylindrical tools and concave circular tool. The experimental trials were performed by rotary ultrasonic drilling (RUD) and CNC conventional drilling (CD). The actual industrial conditions and parameters were considered throughout the experimentation. Physics behind the formation of chipping on hole periphery by RUD and CD are revealed. In addition, individual mechanisms of multi-shape tools with respect to chipping are analyzed. The results show that RUD process has attained the smallest measurement of chip radial distance as compared to CD for all types of tool. Finally, the concave circular tool is found as the best tool particularly to get least chip radial distance during drilling i.e. 0.1145 mm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call