Abstract

The results of long-term investigations of the bone system of humans during space flights (SFs) on board the Mir orbital station (OS) and international space station (ISS) using osteodensitometry are summarized. Comparative analysis of the results showed the absence of significant differences in changes in the bone mass (BM) in the crew members of both OSs. Theoretically, the expected bone mass losses in the trabecular bone structures of the lower part of the body in the process of a SF (five to seven months) are interpreted in some cases as quickly developing, but reversible, osteopenia and generally interpreted as the evidence of bone functional adaptation to altering mechanical loads on the skeleton. The high individual variability of changes and the stability of the individual character of the BM alteration ratio in different skeletal segments irrespective of the OS type are shown. Owing to the aforementioned individual features, it is not possible to establish a strict relationship between BM changes and the duration of space missions, and, therefore, there is no good reason for calculating the probability of achieving the critical demineralization level when the duration of an SF increases to 1.5–2 years. The probability of prediction of changes in the bone quality (structure) is still less, which, together with BM losses, determines the risk of fractures, and osteodensitometry for such an analysis is insufficient. The main directions of the studies, which could optimize the development of the interplanetary expedition project from the point of view of maintenance of the mechanical function of the skeleton, are considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call