Abstract
Under the Eulerian–Eulerian framework of simulating gas–solid two-phase flow, the accuracy of the hydrodynamic prediction is strongly affected by the selection of rheology of the particulate phase, for which a detailed assessment is still absent. Using a jetting fluidized bed as an example, this work investigates the influence of solid rheology on the hydrodynamic behavior by employing different particle-phase viscosity models. Both constant particle-phase viscosity model (CVM) with different viscosity values and a simple two-fluid model without particle-phase viscosity (NVM) are incorporated into the classical two-fluid model and compared with the experimental measurements. Qualitative and quantitative results show that the jet penetration depth, jet frequency and averaged bed pressure drop are not a strong function of the particle-phase viscosity. Compared to CVM, the NVM exhibits better predictions on the jet behaviors, which is more suitable for investigating the hydrodynamics of gas–solid fluidized bed with a central jet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.