Abstract

Backgrounds and aims The phytostabilization potential of plants is a direct function of their root systems. An experimental design was developed to investigate the impact of Cd and Zn on the root distribution and morphology of Lolium perenne and Trifolium repens. Methods Seedlings were transplanted into columns filled with washed quartz and irrigated daily with Cdor Zn-containing nutrient solutions during 1 month. Root biomass, root length density (RLD) and diameter were subsequently quantified as a function of depth. Pot experiments were also performed to quantify metal, lignin and structural polysaccharides concentrations as well as cell viability. Results Lolium perenne accumulated Cd and Zn in the roots whereas T. repens was unable to restrict heavy metal translocation. Cadmium and Zn reduced rooting depth and RLDbut induced thick shoot-borne roots in L. perenne. Cd-induced root swelling was related to lignification occurring in the exodermis and parenchyma of central cylinder. Hemicelluloses and lignin did not play a key role in root metal retention. Cadmium slightly reduced mean root cell viability whereas Zn increased this parameter in comparison to Cd. Conclusions Even though plant species like Lolium perenne and Trifolium repens may appear suitable for a phytostabilization scheme based on their shoot metal tolerance, exposure to toxic heavy metals drastically impairs their root distribution. This could jeopardize the setting up of phytostabilization trials. The metal-induced alterations of root system properties are clearly metal- and speciesspecific. At sites polluted with multiple metals, it is therefore recommended to first test their impact on the root system of multiple plant species so as to select the most appropriate species for each site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call