Abstract
The increasing demand for natural products has led to biotechnological vanillin production, which requires the recovery of vanillin (and vanillyl alcohol at trace concentrations, as in botanical vanillin) from the bioconversion broth, free from potential contaminants: the substrate and metabolites of bioconversion. This work discusses the recovery and fractionation of bio-vanillin, from a bioconversion broth, by pervaporation and by vacuum distillation, coupled with fractionated condensation. The objective was to recover vanillin free of potential contaminants, with maximised fluxes and selectivity for vanillin against water and minimised energy consumption per mass of vanillin recovered. In vacuum distillation fractionated condensation, adding several consecutive water pulses to the feed increased the percentage of recovered vanillin. In pervaporation-fractionated condensation and vacuum distillation-fractionated condensation processes, it was possible to recover vanillin and traces of vanillyl alcohol without the presence of potential contaminants. Vacuum distillation–experiments presented higher vanillin fluxes than pervaporation fractionated condensation experiments, 2.7 ± 0.1 g·m−2 h−1 and 1.19 ± 0.01 g·m−2 h−1, respectively. However, pervaporation fractionated condensation assures a selectivity of vanillin against water of 4.5 on the pervaporation step (acting as a preconcentration step) and vacuum distillation fractionated condensation requires a higher energy consumption per mass of vanillin recovered when compared with pervaporation– fractionated condensation, 2727 KWh kgVAN−1 at 85 °C and 1361 KWh kgVAN−1 at 75 °C, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.