Abstract
Crowdfunding has become a popular financing method, attracting investors, businesses, and entrepreneurs. However, many campaigns fail to secure funding, making it crucial to reduce participation risks using artificial intelligence (AI). This study investigates the effectiveness of advanced AI techniques in predicting the success of crowdfunding campaigns on Kickstarter by analyzing campaign blurbs. We compare the performance of two widely used text representation models, bidirectional encoder representations from transformers (BERT) and FastText, in conjunction with long-short term memory (LSTM) and gradient boosting machine (GBM) classifiers. Our analysis involves preprocessing campaign blurbs, extracting features using BERT and FastText, and evaluating the predictive performance of these features with LSTM and GBM models. All experimental results show that BERT representations significantly outperform FastText, with the highest accuracy of 0.745 achieved using a fine-tuned BERT model combined with LSTM. These findings highlight the importance of using deep contextual embeddings and the benefits of fine-tuning pre-trained models for domain-specific applications. The results are benchmarked against existing methods, demonstrating the superiority of our approach. This study provides valuable insights for improving predictive models in the crowdfunding domain, offering practical implications for campaign creators and investors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.