Abstract
BackgroundPlants selectively attract particular soil microorganisms, in particular consumers of root-excreted compounds. It is unclear to what extent cultivar type and/or growth stage affect this process.Methodology/Principal FindingsDNA-based pyrosequencing was used to characterize the structure of bacterial communities in a field cropped with potato. The rhizospheres of six cultivars denoted Aveka, Aventra, Karnico, Modena, Premiere and Desiree, at three growth stages (young, flowering and senescence) were examined, in addition to corresponding bulk soils. Around 350,000 sequences were obtained (5,700 to 38,000 per sample). Across all samples, rank abundance distributions best fitted the power law model, which indicates a community composed of a few highly dominant species next to numerous rare species. Grouping of the sequences showed that members of the Actinobacteria, Alphaproteobacteria, next to as-yet-unclassified bacteria, dominated. Other groups that were consistently found, albeit at lower abundance, were Beta-, Gamma- and Deltaproteobacteria and Acidobacteria. Principal components analyses revealed that rhizosphere samples were significantly different from corresponding bulk soil in each growth stage. Furthermore, cultivar effects were found in the young plant stage, whereas these became insignificant in the flowering and senescence stages. Besides, an effect of time of season was observed for both rhizosphere and bulk soils. The analyzed rhizosphere samples of the potato cultivars were grouped into two groups, in accordance with the allocation of carbon to starch in their tubers, i.e. Aveka, Aventra and Karnico (high) versus Premiere and Desiree (low) and thus replicates per group were established.ConclusionsAcross all potato cultivars, the young plant stages revealed cultivar-dependent bacterial community structures, which disappeared in the flowering and senescence stages. Furthermore, Pseudomonas, Beta-, Alpha- and Deltaproteobacteria flourished under different ecological conditions than the Acidobacteria.
Highlights
Soil microbial communities are strongly influenced by plant roots, which mainly results from, among other factors, the excretion of organic compounds in root exudates
Across all potato cultivars, the young plant stages revealed cultivar-dependent bacterial community structures, which disappeared in the flowering and senescence stages
Pseudomonas, Beta, Alpha- and Deltaproteobacteria flourished under different ecological conditions than the Acidobacteria
Summary
Soil microbial communities are strongly influenced by plant roots, which mainly results from, among other factors, the excretion of organic compounds in root exudates. Via this active release of carbonaceous compounds, plants can selectively attract particular soil microorganisms to their rhizospheres, including the primary consumers of the root-excreted compounds [1,2,3]. Since PCR-DGGE only allows an assessment of the dominant members of microbial communities in natural systems [9], the extent to which this effect holds true for the less abundant plant-associated bacterial species remained unknown. It is unclear to what extent cultivar type and/or growth stage affect this process
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.