Abstract

BackgroundAvian poxviruses are important pathogens of both wild and domestic birds. To date, seven isolates from subclades A and B and one from proposed subclade E, have had their genomes completely sequenced. The genomes of these isolates have been shown to exhibit typical poxvirus genome characteristics with conserved central regions and more variable terminal regions. Infection with avian poxviruses (APVs) has been reported in three species of captive flamingo, as well as a free-living, lesser flamingo at Kamfers dam, near Kimberley, South Africa. This study was undertaken to further characterise this virus which may have long term effects on this important and vulnerable, breeding population.ResultsGene content and synteny as well as percentage identities between conserved orthologues was compared between Flamingopox virus (FGPV) and the other sequenced APV genomes. Dotplot comparisons revealed major differences in central regions that have been thought to be conserved. Further analysis revealed five regions of difference, of differing lengths, spread across the central, conserved regions of the various genomes. Although individual gene identities at the nucleotide level did not vary greatly, gene content and synteny between isolates/species at these identified regions were more divergent than expected.ConclusionBasic comparative genomics revealed the expected similarities in genome architecture but an in depth, comparative, analysis showed all avian poxvirus genomes to differ from other poxvirus genomes in fundamental and unexpected ways. The reasons for these large genomic rearrangements in regions of the genome that were thought to be relatively conserved are yet to be elucidated. Sequencing and analysis of further avian poxvirus genomes will help characterise this complex genus of poxviruses.

Highlights

  • Avian poxviruses are important pathogens of both wild and domestic birds

  • Because of the relative lack of complete genome sequences of avian poxviruses, construction of phylogenies has to date relied on single gene analyses, with the P4b gene [13], one of the 49 genes conserved in all poxviruses, being the most commonly used [14,15,16,17,18,19,20]

  • These analyses have shown that the Avipoxvirus genus is divided into 3 clades, A (Fowlpox like viruses), B (Canarypox like viruses) and C (Parrotpox (PRPV) like viruses) as well as two proposed clades, D (Quailpox virus (QPV)) and E (Turkeypox virus(TKPV))

Read more

Summary

Introduction

Avian poxviruses are important pathogens of both wild and domestic birds. To date, seven isolates from subclades A and B and one from proposed subclade E, have had their genomes completely sequenced. Because of the relative lack of complete genome sequences of avian poxviruses, construction of phylogenies has to date relied on single gene analyses, with the P4b gene (fwpv167; cnpv240; vacv A3L) [13], one of the 49 genes conserved in all poxviruses, being the most commonly used [14,15,16,17,18,19,20] These analyses have shown that the Avipoxvirus genus is divided into 3 clades, A (Fowlpox like viruses), B (Canarypox like viruses) and C (Parrotpox (PRPV) like viruses) as well as two proposed clades, D (Quailpox virus (QPV)) and E (Turkeypox virus(TKPV)). Clades A and B are further divided into several subclades which differ slightly in their composition depending on the genetic locus used for analysis and as such, are still being resolved

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call