Abstract

In this paper, we follow a chronological development of gradient descent methods and its accelerated variants later on. We specifically emphasise some contemporary approaches within this research field. Accordingly, a constructive overview over the class of hybrid accelerated models derived from the three-term hybridization process proposed by Khan is presented. Extensive numerical test results illustrate the performance profiles of hybrid and non-hybrid versions of chosen accelerated gradient models regarding the number of iterations, CPU time, and number of function evaluation metrics. Favorable outcomes justify this hybrid approach as an accepted method in developing new efficient optimization schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.