Abstract

In this research, the results of comparative analysis of a single fuel droplet evaporation models are presented. Three well-known evaporation models including Spalding, Borman-Johnson and Abramzon-Sirignano models are analyzed using Computational Fluid Dynamic (CFD). The original Spalding model is extended to consider the effects of the Stefan flow, unsteady vaporization, and variable properties. The evaporation models are validated using already existing experimental data. Numerical results show that the Spalding model overestimates the temperature of the droplet surface in comparison with the other two models, although some modifications were made in the aforementioned model. Our final evaluation concludes that Abramzon-Sirignano model predictions are in good agreement with the experimental data. Therefore, in this paper, this model is used for the parametric study of the effects of droplet size, ambient temperature and pressure on the droplet lifetime and temperature. Results indicate that by increasing the droplet size, the lifetime of the droplets will increase and the steady-state droplet temperature is higher at higher ambient pressures and temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.