Abstract

Machine learning has been proven to provide good performances on stress detection tasks using multi-modal sensor data from a smartwatch. Generally, machine learning techniques need a sufficient amount of data to train a robust model. Thus, we need to collect data from several users and send them to a central server to feed the algorithm. However, the uploaded data may contain sensitive information that can jeopardize the user’s privacy. Federated learning can tackle this challenge by enabling the model to be trained using data from all users without the user’s data leaving the user’s device. In this study, we implement federated learning-based stress detection and provide a comparative analysis between individual, centralized, and federated learning. The experiment was conducted on WESAD dataset by using Logistic Regression as the classifier. The experiment results show that in terms of accuracy, federated learning cannot reach the performance level of both individual and centralized learning. The individual learning strategy performs best with an average accuracy of 0.9998 and an average F1-measure of 0.9996.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.