Abstract
BackgroundAtrial fibrillation (AF) is one of the most common cardiovascular problems, and its asymptomatic tendency makes AF detection challenging. Machine and deep learning methods are commonly used in AF detection.ObjectiveThe purpose of this study was to evaluate the information provided by convolutional neural network (CNN) and random forest (RF) machine learning models for AF classification.MethodsWe manually extracted 166 time–frequency domains and linear and nonlinear features to classify single-lead electrocardiograms (ECGs) as normal, AF, other, or noisy sinus rhythms. We selected a subset of 56 robust features using a genetic algorithm that was used in the RF model. In a separate study, a 1-dimensional, 12-layer CNN was designed on the raw ECG rhythms. Four features from the output layer and 128 features from the fully connected layer of CNN were explored independently for classification. The models were trained and internally validated on 8,528 ECGs and externally validated on a hidden dataset containing 3,658 ECGs. Next,we analyzed the correlation between engineered and CNN-learned features.ResultsAn RF classifier trained with 56-engineered features resulted in an F1 score of 0.91, 0.78, and 0.72 for normal, AF, and other rhythms, respectively. However, an ensemble of support vector machine and the CNN model resulted in an F1 score of 0.92, 0.87, and 0.80, respectively.ConclusionWe explored various features and machine learning models to identify AF rhythms using short (9–61 seconds) single-lead ECG recordings. Our results showed that the proposed CNN model abstracted distinctive features for AF classification.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.